标签:数据分析

  • 50个最佳机器学习公共数据集

    外国自媒体mlmemoirs根据github、福布斯、CMU官网等信息,整理了一张50个最佳机器学习公共数据集的榜单,为大家分享一下~ 外国自媒体mlmemoirs根据github、福布斯、CMU官网等信息,整理了一张50个最佳机器学习公共数据集的榜单,为大家分享一下~ 提前说下须知: 一、寻找数据集的意义 根据CMU的说法,寻找一个好用的数据…

    令爷收藏 2024年10月1日 40
  • 数据探索工具Dataprep.eda

    数据探索工具Dataprep.eda 来源: https://www.biaodianfu.com Pandas-profiling(2016)被称为EDA(Exploratory Data Analysis)分析的典型工具,然而Pandas-profiling的一个主要缺点是它提供的是数据集的侧写,而EDA是一个迭代的过程,分析过程中会对对数据不断进行质疑、理解、处理、转换等。 Pandas-profiling严格的…

    2024年9月8日 49
  • Pandas基础教程之替换SQL

    Pandas基础教程之替换SQL 来源: https://www.biaodianfu.com 对于很多数据分析的同学来说,最熟悉的莫过于SQL,针对数据处理问题,脑海里的第一反应也往往都是SQL,而在日常的工作中往往也需要在Pandas的DataFrame数据上处理和分析数据,今天就一起来学习Pandas。 使用Pandas代替SQL 选择列 ## select COL1, COL2 from …

    2024年9月8日 38
  • 统计学基础之摘要统计

    统计学基础之摘要统计 来源: https://www.biaodianfu.com 什么是摘要统计? 摘要统计是一种用来描述、概括和呈现数据集特征的统计学工具。它们通常用于数据分析的初步阶段,可以帮助研究者理解数据的基本趋势和模式,但不用于从样本推断总体的结论。摘要统计主要包括两类指标:集中趋势的度量和离散程度的度量。 集中趋…

    2024年9月8日 46
  • 探索性数据分析详解

    探索性数据分析详解 来源: https://www.biaodianfu.com 什么是探索性数据分析? 探索性数据分析(Exploratory Data Analysis,简称EDA) 是指对已有的数据(特别是调查或观察得来的原始数据)在尽量少的先验假定下进行探索,通过作图、制表、方程拟合、计算特征量等手段探索数据的结构和规律的一种数据分析方法。 探索…

    2024年9月8日 43
  • 实证分析: T检验、方差分析(ANOVA)和卡方检验的对比分析

    以下是T检验、方差分析(ANOVA)和卡方检验的对比分析,以及它们在不同应用领域的详细描述。 统计方法 T检验 方差分析(ANOVA) 卡方检验 目的 比较两个组的均值差异 比较多个组的均值差异 比较分类变量的频数分布 数据类型 连续变量(通常是正态分布) 连续变量(通常是正态分布) 分类变量 适用条件 样本数量较小,正…

    数据探索分析 2024年9月8日 42
  • 关联分析算法之FP-Growth

    关联分析算法之FP-Growth 来源: https://www.biaodianfu.com 在Apriori算法的学习中,我们了解到Apriori算法需要不断生成候选项目队列和不断得扫描整个数据库进行比对,I/O是很大的瓶颈。为了解决这个问题,FP-Growth利用了巧妙的数据结构,无论多少数据,只需要扫描两次数据集,大大降低了Aproir挖掘算法的代价。FP-Gr…

    2024年9月7日 46
  • 机器学习算法之线性回归

    机器学习算法之线性回归 来源: https://www.biaodianfu.com 线性回归是统计学总最常用的算法之一。从根本上来说,当你想表示两个变量间数学关系时,就可以使用线性回归。当你使用它时,你首先假设输出变量(有时称为响应变量、因变量或标签)和预测变量(有时称为自变量、解释变量或特征)之间存在线性关系。当然这种线…

    2024年9月7日 49
  • 机器学习算法之逻辑回归

    机器学习算法之逻辑回归 来源: https://www.biaodianfu.com 逻辑回归算法的名字里虽然带有“回归”二字,但实际上逻辑回归算法是用来解决分类问题的。简单来说, 逻辑回归(Logistic Regression)是一种用于解决二分类(0 or 1)问题的机器学习方法,用于估计某种事物的可能性。比如某用户购买某商品的可能性,某病人患有…

    2024年9月7日 42
  • 机器学习算法之朴素贝叶斯

    机器学习算法之朴素贝叶斯 来源: https://www.biaodianfu.com 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。 贝叶斯定理 贝叶斯定理实际上就是计算“条件概率” 的公式。条件概率(Conditional Probability)是指…

    2024年9月7日 34
  • 机器学习算法之主成分分析PCA

    机器学习算法之主成分分析PCA 来源: https://www.biaodianfu.com 主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一。在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用。一般我们提到降维最容易想到的算法就是PCA,下面我们就对PCA的原理做一个总结。 首先考虑一个问题:对于正交…

    2024年9月7日 50
  • 机器学习聚类算法之K-Means

    来源: https://www.biaodianfu.com 机器学习聚类算法之K-Means 根据训练样本中是否包含标签信息,机器学习可以分为监督学习和无监督学习。聚类算法是典型的无监督学习,其训练的样本中值包含样本的特征,不包含样本的标签信息。在聚类算法中。利用样本的特征,将具有相似属性的样本划分到统一类别中,它有点像全自动分…

    2024年9月7日 35
  • 风险控制:信用评分卡模型

    来源: https://www.biaodianfu.com 什么是信用评分卡模型? 评分卡模型又叫做信用评分卡模型,最早由美国信用评分巨头FICO公司于20世纪60年代推出,在信用风险评估以及金融风险控制领域中广泛使用。银行利用评分卡模型对客户的信用历史数据的多个特征进行打分,得到不同等级的信用评分,从而判断客户的优质程度,据此决…

    2024年9月7日 49
  • 机器学习之类别特征处理

    来源: https://www.biaodianfu.com 类别型特征(categorical feature)主要是指职业,血型等在有限类别内取值的特征。它的原始输入通常是字符串形式,大多数算法模型不接受数值型特征的输入,针对数值型的类别特征会被当成数值型特征,从而造成训练的模型产生错误。 Label encoding Label Encoding是使用字典的方式,将…

    2024年9月7日 45
  • Pandas数据处理简明教程

    来源: https://www.biaodianfu.com 在使用Python处理分析数据的时候,用的最多的算是Pandas时,由于Pandas是个非常强大的工具,涉及到的功能非常多,所以平常使用的时候经常需要查询文档。这里记载了自己常用的一些功能及知识点。 Pandas简介 Pandas是python的一个数据分析包,最初由AQR Capital Management于2008年4月…

    2024年9月7日 45

联系我们

15602395067

在线咨询:点击这里给我发消息

邮件:eden7@qq.com

工作时间:周一至周五,9:30-18:30,节假日休息

QR code