标签:原理

  • Pandas基础教程之替换SQL

    Pandas基础教程之替换SQL 来源: https://www.biaodianfu.com 对于很多数据分析的同学来说,最熟悉的莫过于SQL,针对数据处理问题,脑海里的第一反应也往往都是SQL,而在日常的工作中往往也需要在Pandas的DataFrame数据上处理和分析数据,今天就一起来学习Pandas。 使用Pandas代替SQL 选择列 ## select COL1, COL2 from …

    2024年9月8日 38
  • 统计学基础之摘要统计

    统计学基础之摘要统计 来源: https://www.biaodianfu.com 什么是摘要统计? 摘要统计是一种用来描述、概括和呈现数据集特征的统计学工具。它们通常用于数据分析的初步阶段,可以帮助研究者理解数据的基本趋势和模式,但不用于从样本推断总体的结论。摘要统计主要包括两类指标:集中趋势的度量和离散程度的度量。 集中趋…

    2024年9月8日 46
  • 探索性数据分析详解

    探索性数据分析详解 来源: https://www.biaodianfu.com 什么是探索性数据分析? 探索性数据分析(Exploratory Data Analysis,简称EDA) 是指对已有的数据(特别是调查或观察得来的原始数据)在尽量少的先验假定下进行探索,通过作图、制表、方程拟合、计算特征量等手段探索数据的结构和规律的一种数据分析方法。 探索…

    2024年9月8日 43
  • 机器学习/数据分析之缺失值处理

    机器学习/数据分析之缺失值处理 来源: https://www.biaodianfu.com 在机器学习数据预处理阶段经常需要对数据进行缺失值处理。关于缺失值的处理并没有想象中的那么简单。以下为一些经验分享。 数据缺失类型 完全随机丢失(MCAR,Missing Completely at Random) :某个变量是否缺失与它自身的值无关,也与其他任何变量的…

    2024年9月8日 54
  • 机器学习算法之XGBoost

    机器学习算法之XGBoost 来源: https://www.biaodianfu.com 什么是XGBoost? 全称:eXtreme Gradient Boosting 作者:陈天奇(华盛顿大学博士) 基础:GBDT 所属:boosting迭代型、树类算法。 适用范围:分类、回归 优点:速度快、效果好、能处理大规模数据、支持多种语言、支持自定义损失函数等等。 缺点:算法参数过多,…

    2024年9月8日 51
  • 实证分析: T检验、方差分析(ANOVA)和卡方检验的对比分析

    以下是T检验、方差分析(ANOVA)和卡方检验的对比分析,以及它们在不同应用领域的详细描述。 统计方法 T检验 方差分析(ANOVA) 卡方检验 目的 比较两个组的均值差异 比较多个组的均值差异 比较分类变量的频数分布 数据类型 连续变量(通常是正态分布) 连续变量(通常是正态分布) 分类变量 适用条件 样本数量较小,正…

    数据探索分析 2024年9月8日 42
  • 机器学习算法之K-近邻(KNN)

    机器学习算法之K-近邻(KNN) 来源: https://www.biaodianfu.com 什么是K-近邻算法? K近邻法(k-nearest neighbor, k-NN)是1967年由Cover T和Hart P提出的一种基本分类与回归方法。它的工作原理是:存在一个样本数据集合,也称作为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类…

    2024年9月7日 39
  • 关联分析算法之FP-Growth

    关联分析算法之FP-Growth 来源: https://www.biaodianfu.com 在Apriori算法的学习中,我们了解到Apriori算法需要不断生成候选项目队列和不断得扫描整个数据库进行比对,I/O是很大的瓶颈。为了解决这个问题,FP-Growth利用了巧妙的数据结构,无论多少数据,只需要扫描两次数据集,大大降低了Aproir挖掘算法的代价。FP-Gr…

    2024年9月7日 46
  • 相关性分析:Pearson、Kendall、Spearman

    相关性分析:Pearson、Kendall、Spearman 来源: https://www.biaodianfu.com 在分析特征间相关性时,常使用的方法是pandas.DataFrame.corr: DataFrame.corr(self, method=’pearson’, min_periods=1) 其中包含的方法主要为: pearson:Pearson相关系数 kendall:Kendall秩相关系数 Spearman:Spearman等级相关系数 Pear…

    2024年9月7日 48
  • 机器学习算法之线性回归

    机器学习算法之线性回归 来源: https://www.biaodianfu.com 线性回归是统计学总最常用的算法之一。从根本上来说,当你想表示两个变量间数学关系时,就可以使用线性回归。当你使用它时,你首先假设输出变量(有时称为响应变量、因变量或标签)和预测变量(有时称为自变量、解释变量或特征)之间存在线性关系。当然这种线…

    2024年9月7日 49
  • 机器学习算法之逻辑回归

    机器学习算法之逻辑回归 来源: https://www.biaodianfu.com 逻辑回归算法的名字里虽然带有“回归”二字,但实际上逻辑回归算法是用来解决分类问题的。简单来说, 逻辑回归(Logistic Regression)是一种用于解决二分类(0 or 1)问题的机器学习方法,用于估计某种事物的可能性。比如某用户购买某商品的可能性,某病人患有…

    2024年9月7日 42
  • 机器学习算法之朴素贝叶斯

    机器学习算法之朴素贝叶斯 来源: https://www.biaodianfu.com 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。 贝叶斯定理 贝叶斯定理实际上就是计算“条件概率” 的公式。条件概率(Conditional Probability)是指…

    2024年9月7日 34
  • 机器学习算法之支持向量机SVM

    机器学习算法之支持向量机SVM 来源: https://www.biaodianfu.com 什么是支持向量机(SVM)? 支持向量机(support vector machines, SVM)是一种二类分类模型。它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;支持向量机还包括核技巧,这使它成为实质上的非线性分类器。支持向量机…

    2024年9月7日 32
  • 机器学习算法之主成分分析PCA

    机器学习算法之主成分分析PCA 来源: https://www.biaodianfu.com 主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一。在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用。一般我们提到降维最容易想到的算法就是PCA,下面我们就对PCA的原理做一个总结。 首先考虑一个问题:对于正交…

    2024年9月7日 50
  • 机器学习算法之决策树分类

    机器学习算法之决策树分类 来源: https://www.biaodianfu.com 什么是决策树 决策树(decision tree)是一种依托于策略抉择而建立起来的树。机器学习中,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。 树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,从根节点到叶节点所…

    2024年9月7日 48

联系我们

15602395067

在线咨询:点击这里给我发消息

邮件:eden7@qq.com

工作时间:周一至周五,9:30-18:30,节假日休息

QR code